TreeBUGS: An R package for hierarchical multinomial-processing-tree modeling
نویسندگان
چکیده
Multinomial processing tree (MPT) models are a class of measurement models that account for categorical data by assuming a finite number of underlying cognitive processes. Traditionally, data are aggregated across participants and analyzed under the assumption of independently and identically distributed observations. Hierarchical Bayesian extensions of MPT models explicitly account for participant heterogeneity by assuming that the individual parameters follow a continuous hierarchical distribution. We provide an accessible introduction to hierarchical MPT modeling and present the user-friendly and comprehensive R package TreeBUGS, which implements the two most important hierarchical MPT approaches for participant heterogeneity-the beta-MPT approach (Smith & Batchelder, Journal of Mathematical Psychology 54:167-183, 2010) and the latent-trait MPT approach (Klauer, Psychometrika 75:70-98, 2010). TreeBUGS reads standard MPT model files and obtains Markov-chain Monte Carlo samples that approximate the posterior distribution. The functionality and output are tailored to the specific needs of MPT modelers and provide tests for the homogeneity of items and participants, individual and group parameter estimates, fit statistics, and within- and between-subjects comparisons, as well as goodness-of-fit and summary plots. We also propose and implement novel statistical extensions to include continuous and discrete predictors (as either fixed or random effects) in the latent-trait MPT model.
منابع مشابه
rTableICC: An R Package for Random Generation of 2×2×K and R×C Contingency Tables
In this paper, we describe the R package rTableICC that provides an interface for random generation of 2×2×K and R×C contingency tables constructed over either intraclass-correlated or uncorrelated individuals. Intraclass correlations arise in studies where sampling units include more than one individual and these individuals are correlated. The package implements random generation of contingen...
متن کاملHierarchical multinomial models 1 Running head: HIERARCHICAL MULTINOMIAL MODELS Hierarchical Multinomial Processing Tree Models: A Latent-Class Approach
Multinomial processing tree models are widely used in many areas of psychology. Their application relies on the assumption of parameter homogeneity, that is, on the assumption that participants do not differ in their parameter values. Tests for parameter homogeneity are proposed that can be routinely used as part of multinomial model analyses to defend the assumption. If parameter homogeneity i...
متن کاملdendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering
UNLABELLED dendextend is an R package for creating and comparing visually appealing tree diagrams. dendextend provides utility functions for manipulating dendrogram objects (their color, shape and content) as well as several advanced methods for comparing trees to one another (both statistically and visually). As such, dendextend offers a flexible framework for enhancing R's rich ecosystem of p...
متن کاملComparison of Error Tree Analysis and TRIPOD BETA in Accident Analysis of a Power Plant Industry Using Hierarchical Analysis
Introduction: Due to the importance and necessity of accident analysis, it is necessary to use proper technique for precise accident analysis and to provide corrective and preventive measures to prevent recurrence of an accident. Method: In this descriptive-analytical paper, the most important criteria for investigating and selecting accident investigation and analysis techniques and selecting...
متن کاملTutorial on the package hmmm
In this tutorial we show how complete hierarchical multinomial marginal (HMM) models for categorical variables can be defined, estimated and tested using the hmmm package.
متن کامل